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Ferromagnetic ground state in the Kondo lattice model
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Abstract. We present a series of rigorous examples of the Kondo lattice model that exhibit full ferro-
magnetism in the ground state. The models are defined in one-, two- and three-dimensional lattices, and
are characterized by a range of hopping terms, specific electron filling, and large ferromagnetic coupling.
Our examples show that a sufficient strong but finite exchange coupling between conduction electrons and
localized spins could overcome the competition from mobility of a finite density of electrons and drive the
system from a paramagnetic phase to a ferromagnetic phase. We also establish a relation of ferromagnetism
between the Hubbard model and Kondo lattice model. Meanwhile some rigorous results on ferromagnetism
in the corresponding Hubbard model are presented.

PACS. 75.10.Lp Band and itinerant models – 75.50.-y Studies of specific magnetic materials

1 Introduction and the main result

The Kondo lattice model has been of considerable interest
due to its relevance to magnetism in strongly correlated
electron systems, such as transition metal oxides (See Ref.
[1]). The model is defined on a discrete lattice ∧ with N∧
lattice sites. Except for itinerant electrons, every site is oc-
cupied by one localized spin Si with spin S. The simplest
version of the Hamiltonian is given by

H =
∑
ij

tijc
†
i,σcj,σ − J

∑
i∈∧

Si · Sic (1)

where c†i,σ and ci,σ are the creation and annihilation opera-

tors of the conduction electron at site i with spin σ(= ↑, ↓).
(Sic)α =

∑
σ,σ′ c

†
i,σ(σα)σσ′ci,σ′/2 where σα (α = x, y, z)

are the Pauli matrices. In this paper, we restrict our dis-
cussion in the case of J > 0, i.e., the ferromagnetic Hund
coupling. The origin of the Hund coupling is the Coulomb
interaction. The antiferromagnetic coupling J < 0 only
appears in some restricted spaces, for example, the case
of half filling of electrons.

One of the basic physical problems in this model is
whether a paramagnetic phase could evolve to a fully satu-
rated ferromagnetic phase when the exchange coupling be-
tween electrons and localized spins becomes much larger.
In the strong Hund coupling limit (J → +∞), the spin
of conduction electron is parallel to the localized spin on
the same site, and a conduction electron prefers to hop be-
tween two sites on which two localized spins are parallel to
each other. The property favors to form a ferromagnetic
state, and lead to the double exchange mechanism for
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ferromagnetism proposed by Zener [2] and subsequently
studied extensively [3–6]. This picture was confirmed rig-
orously in a single-electron case and other limits by Kubo
[7] and by Sigrist et al.[8]. However, the case of two elec-
trons on a closed ring has a spin singlet ground state [7,9],
and the case of a half filled band on a bipartite lattice has
an anti-ferromagnetic or ferri-magnetic state instead of a
ferromagnetic one [10]. For a finite density of electrons,
the kinetic energy does not favor to form a ferromagnetic
state rather than a paramagnetic one. Thus a physically
interested problem is whether the strong exchange cou-
pling could overcome the kinetic energy of a finite density
of electrons to form a ferromagnetic state. As far as we
know, there are no rigorous examples that the double ex-
change ferromagnetism exists in the case of a finite density
of electrons, and finite exchange coupling. In this paper we
present a series of rigorous examples which exhibit fully
saturated ferromagnetism in the ground state.

In order to establish a rigorous result on ferromag-
netism, we define the model on the lattices ∧ as shown in
Figure 1. The lattice sites are decomposed into two sub-
sets: A and B. Each A site has na (= 2, 3, 4, · · · ) nearest
neighbor B sites, and each B site has nb = 2 nearest neigh-
bor A sites so that each B site is located in the middle
point of a bond between two A sites. The hopping terms
are defined such that they can be rewritten in a compact
form,

H =
∑
i∈A

hi0 − J
∑
i∈∧

Si · Sic (2)
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Fig. 1. Several examples of the lattices with na = 2 (a), 3
(b), 4 (c), 6 (d), and nb = 2. Other lattices are also possible.
For example the diamond structure lattice has na = 4 as the
lattice (c) and is three-dimensional, the Kagome lattice also
has na = 4 and is two-dimensional, and the triangular lattice
has na = 6 as the lattice (d) and is two-dimensional. The filled
points stand for lattice sites belonging to A, and the open
points for lattice sites belonging to B.

where

hi0 = −t′
∑
σ

a†i,σai,σ +
t

2

∑
δ,σ

a†i+δ,σai+δ,σ, (3)

a†i,σ = λc†i,σ −
∑
δ

c†i+δ,σ, if i ∈ A, (4)

a†i,σ = λc†i,σ +
∑
δ

c†i+δ,σ, if i ∈ B, (5)

where the summation δ runs over all the nearest neighbor

sites of i. {a†i,σ, ai,σ} = λ2+na(b) if i ∈ A(B), {a†i,σ, aj,σ} =
1 if i and j are a pair of the nearest neighbor A and
B sites, and the other anti-commutators vanish. In this
case, tij = tji = t if i and j are a pair of the nearest
neighbor A sites; tij = −t′ if i and j are a pair of the
nearest neighbor B sites; tij = λ(t + t′) if i and j are a
pair of the nearest neighbor sites; tii = nat− t′λ2 if i ∈ A;
tii = tλ2−nbt

′ if i ∈ B; and tij = 0 otherwise. t, t′ ≥ 0 and
λ is a non-zero constant. The total spin operator Stot =∑
i∈∧(Si + Sic) commutes with the Hamiltonian and is

a good quantum number. Denote by N∧ the number of
the lattice sites. The maximum value of the total spin is
Stot = SN∧ + Ne/2 if the number of electrons Ne < N∧,
and Stot = SN∧+(2N∧−Ne)/2 if the number of electrons
Ne > N∧.

The main result in this paper is summarized as follows
Theorem I: Define the Kondo lattice model (Eq. (2))
with the hopping matrix {tij}. Take t = 1 the energy
unit. tc(λ) as shown in Figure 2 and fc(λ, t

′) as shown in
Figures 3 and 4 are two functions obtained numerically.
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Fig. 2. λ-dependence of t′c calculated for the case of f = +∞.
tc(λ)→ 1, 1/2, 1/3, 1/5 for na = 2, 3, 4, 6 as λ� 1.
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Fig. 3. λ- and t′-dependence of fc calculated for the case of
na = 2.

Assume t′ ≤ tc(λ) and JS ≥ fc(λ, t
′). When the den-

sity of electrons is ne = nb/(na + nb), the ground state
exhibits the maximum of the total spin Smax and is non-
degenerate.

Three remarks or corollaries are made:
1) +λ and −λ give the same result, i.e., tc(λ) = tc(−λ)
and fc(λ, t

′) = fc(−λ, t′). This is shown by utilizing the
gauge transformation: ciσ→ε(i)ciσ where ε(i)=1 if i∈A,
and −1 if i ∈ B. Under this transformation, λ→ −λ and
all other terms remain invariant in equation (1).
2) When ne = 1 + na/(na + nb) and t → −t and
t′ → −t′, the ground state exhibits (not fully saturated)
ferromagnetism. It is shown by utilizing the transforma-
tion: ciσ → c†iσ and {S+

i ,S
−
i ,S

z
i } → {−S−i ,−S+

i ,−Szi }.
3) The model in equation (2) contains the next nearest
neighbor hopping and is a multi-band one. When the den-
sity of electron is nb/(na + nb), the lowest energy band
is fully filled. Due to existence of the energy gap between
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Fig. 4. t′-dependence of fc calculated for the case of λ = 2
and na = 2, 3, 4, 6.

the lowest energy bands, the ferromagnetic state should
be insulating.

The proof of Theorem I is divided into two steps: In
Section 2, we introduce a lemma which establishes a re-
lationship on ferromagnetism between the Kondo lattice
model and the Hubbard model; in Section 3, we intro-
duce a theorem on ferromagnetism in the Hubbard model,
which was first proved in one-dimensional case by Tasaki
[11]. We improve and generalize the result to higher di-
mensional cases. Combining the lemma in Section 2 and
the theorem in Section 3 will prove Theorem I. Finally we
make some discussions on ferromagnetism in the Kondo
lattice model.

2 Lemma on the ferromagnetism in the
Hubbard model and Kondo lattice model

The proof of Theorem I will make use of rigorous results
for the Hubbard model. A general form of the Hubbard
model is

HH =
∑
ij

tijc
†
i,σcj,σ + U

∑
i

ni,↑ni,↓, (6)

where c†i,σ and ci,σ are the creation and annihilation op-
erators for conduction electron with spin σ at site i, re-

spectively. ni,σ = c†i,σci,σ. It is believed that the Hubbard
model is more difficult to form ferromagnetism. However
the model contains less degrees of freedom than the Kondo
lattice model. On ferromagnetism, these two models are
related to each other. Here we first introduce a lemma that
establishes the relation.

Lemma: Assume the Kondo lattice model (Eq. (1))
and the Hubbard model (Eq. (6)) have the same hop-
ping terms for conduction electrons, and have the same
number of conduction electrons. The ground state of the
Hubbard model exhibits the maximum of the total spin

of conduction electrons. When JS ≥ U , the ground state
of the Kondo lattice model is also fully saturated ferro-
magnetic. If the ground state of the Hubbard model is
non-degenerate, so is the ground state of the correspond-
ing Kondo lattice model.

Remark: it is worth pointing out that this lemma holds
for any hopping matrix, and is not limited in the case of
equation (2). The condition of JS ≥ U is a sufficient, not
necessary one.
Proof of the lemma: the proof of the theorem is based on
the variational principle. The Kondo lattice model can be
rewritten as

HK = HH +
∑
i

Vi. (7)

The first term is the Hamiltonian for the Hubbard model
as in equation (6), and the second term is the summation
for the local interaction,

Vi = −JSi · Sic − Uni,↑ni,↓. (8)

Let first us consider the local Hamiltonian of the interac-
tion Vi at site i. The total spin and the number of elec-
tron(s) are good quantum numbers. On each site, there
are four configurations for conduction electron(s) and lo-
calized spin: an empty state, single occupancy, and double
occupancy, in which single occupancy contains two states
with total spin S + 1/2 and S − 1/2. The corresponding
energies for Vi are: −JS/2 for the single occupancy with
S + 1, −U for the double occupancy, 0 for empty, and
J(S + 1)/2 for the single occupancy with S − 1.

When the ground state of the Hubbard model exhibits
the maximum of the total spin, one of them consists of all
electrons with spin up, denoted by |Ψc〉,

HH|Ψc〉 = εc|Ψc〉, (9)

where εc is the lowest energy of HH. The state for the
Kondo lattice model consists of localized spins as well as
the itinerant electrons. Construct the state as

|ΨF〉 = |Ψc〉 ⊗ |Ψs〉, (10)

where |Ψs〉 = | ↑↑ · · · ↑〉 consists of all localized spins align-
ing up. The state |ΨF〉 exhibits the maximum of both the
total spin and its z component. On this state, we obtain

HH|ΨF〉 = εc|ΨF〉 (11)

and ∑
i

Vi|ΨF〉 = −
1

2
NeJS|ΨF〉. (12)

Hence the state is an eigenstate of HK. Considering the
second term in equation (7), we compare the energy of
two single occupancies with spin S + 1/2 with one empty
and one double occupancy. In this case the number of
electrons is conserved. The energy difference is U − JS. If
JS > U , the configuration of the two single occupancies
has a lower energy than the configuration with one empty
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and one double occupancy. Thus − 1
2NeJS is the mini-

mum of the total energy for
∑
i Vi when JS > U and the

number of electrons is Ne. As both HH and
∑
i Vi have

the minimum of energy on the state |ΨF〉, according to the
variational principle, the state must be the ground state
or one of the ground states (if degenerate) of the Kondo
lattice model in equation (1).

If |Ψc〉 is the unique ground state of HH, then |ΨF〉 is
the unique ground state of HK. Both εc and −NeJS/2
are the lowest energies of HH and

∑
i Vi, respectively, and

their summation εc−NeJS/2 is the ground state energy of
HK. If HK has another ground state assuming |Ψa〉, then

HK|Ψa〉 = (εc −
1

2
NeJS)|Ψa〉. (13)

In the variational principle, we obtain

〈Ψa|HH|Ψa〉 ≥ εc; (14)

〈Ψa|
∑
i

Vi|Ψa〉 ≥ −
1

2
NeJS. (15)

Combining the two inequalities (Eqs. (14, 15)) and equa-
tion (13), we conclude that only equality holds in the two
inequality, i.e. |Ψa〉 is also a ground state of HH and

∑
i Vi.

As −NeJS/2 is the minimal of
∑
i Vi, it indicates that

the spins of Ne electrons must be parallel to the localized
spins. Consider the unique ground state of HH possesses
the maximal of total spins.All spins in Ψa must be parallel
to each other. Hence |Ψa〉 is the unique state |ΨF〉. Q.E.D.

3 Ferromagnetism in the Hubbard model

Let us now introduce a theorem on ferromagnetism in the
Hubbard model on the lattices in Figure 1. We take the
Hamiltonian in the form,

HH =
∑
i∈A

hi0 + U
∑
i

ni↑ni↓, (16)

in which the hopping matrix is as the same as equation
(2) for the conduction electrons. In his letter [11], Tasaki
presented a theorem in the one-dimensional case. Here we
make a little improvement of his result to a larger regime
in a one-dimensional case and generalize it to higher di-
mensional cases. A revised and improved theorem states
Theorem II: Define the Hubbard model (Eq. (16)) on
the lattices (See Fig. 1) with the hopping matrix {tij}
as in the Kondo lattice model (Eq. (2)). Take t = 1 the
energy unit. tc(λ) as shown in Figure 2 and fc(λ, t

′) as
shown in Figures 3 and 4 are two functions obtained nu-
merically. Assume t′ ≤ tc(λ) and U ≥ fc(λ, t

′). When
the density of electrons is ne = nb/(na + nb), the ground
state exhibits the maximum of the total spin Smax and is
non-degenerate.
Proof of Theorem II: I first consider the part of hopping
terms. The local Hamiltonian hi0 contains 2na + 1 sites.
The t- and t′-terms commute with each other,

[−t′
∑
σ

a†i,σai,σ,
t

2

∑
δ∈NNA,σ

a†i+δ,σai+δ,σ] = 0. (17)

It indicates that these two terms can be diagonalized
simultaneously. For the first term, its lowest energy is
−(λ2 +na)t′ (t′ ≥ 0), and the state is a†i,σ|0〉 and is nonde-
generate. The other 2na eigenstates are degenerate with
eigenvalue zero. For the second term, it is positive semidef-
inite, and its eigenvalues must be non-negative. Using the

operators a†i+δ,σ, the second term can be expressed as a

na × na matrix, and has (na − 1)-fold degenerate eigen-
states with eigenvalue (λ2 + 1)t/2, and an eigenstate with
eigenvalue (λ2 +na +1)t/2. The other na +1 hidden eigen-
states are degenerate with eigenvalue zero. Therefore in
the single electron case, the ground state of hi0 is a†i,σ|0〉

with lowest energy −(λ2 + na)t′. It has other na degener-
ate eigenstates with zero and na eigenvalues with positive
eigenvalues. Denote the eigenvalues by εn. I have

ε0 = −(λ2 + na)t′;

εn = 0, for n = 1, · · · , na;

εn = (λ2 + 1)t/2, for n = na + 1, · · · , 2na − 1;

ε2na = (λ2 + na + 1)t/2. (18)

Construct the state |Ψc〉 =
∏
i∈A a†i,↑|0〉 for Ne = NA elec-

trons (NA is the number of A sites). It is crucial that this
state is an eigenstate for all hi0, although [hi0,hj0] 6= 0
when i and j are a pair of the nearest neighbor sites.

hi0|Ψc〉 = ε0|Ψc〉 (19)

for all i ∈ A. When t′ = 0, ε0 is equal to zero. This is the
lowest energy of hi0 for any n electrons based on equations
(18). In other words, it is the global lowest energy of hi0
in terms of different electrons. In this case, we conclude
that |Ψc〉 is the lowest energy state of

∑
i∈A hi0 with the

density of electrons ne = nb/(na + nb) since each local
Hamiltonian hi0 has its lowest energy on the state. This
is a flat-band ferromagnet [12,13].

When t′ 6= 0, ε0 is no longer the global lowest energy of
hi0, although |Ψc〉 is still an eigenstate of hi0. For example
the ground state of two electrons has the energy 2ε0 which
is less than ε0. In fact the state |Ψc〉 is apparently not the
ground state in the case of U = 0 or very small U in
the variational principle. In the case, the ground state is a
paramagnetic state. To overcome this difficulty, we rewrite
HH (Eq. (16)) as

HH =
∑
i∈A

hi (20)

where

hi = hi0 +
∑
δ

αi+δfni+δ↑ni+δ↓. (21)

αi+δ = α if δ = 0, 1/2 if δ = 1, and (1 − α)/na if
δ = 2 (0 ≤ α ≤ 1). Due to introducing the Hubbard
term in hi, the situation has changed: 〈Ψc|hi|Ψc〉 may be
its minimum when U is sufficiently large, for example in
the one-dimensional case [11]. In the one-dimensional case
hi contains five sites, and can be solved exactly. Part of



S.-Q. Shen: Ferromagnetic ground state in the Kondo lattice model 15

the results was obtained numerically in [11]. In the case of
two electrons there are twenty five states for the finite f
case. Ten of them are spin triplet, which have the lowest
energy ε0. Another fifteen states are spin singlet. Expand-
ing the singlet state in terms of the singlet pair opera-

tor (c†i,↑c
†
j↓−c†i,↓c

†
j↑), the characteristic polynomial for the

Hamiltonian can be calculated exactly. At U = +∞, there
are only ten singlet states due to exclusion of the double
occupancy. When t′ < tc(λ), the lowest energy of the sin-
glet states is higher than ε0 and when t′ > tc(λ), it is lower
than ε0. tc(λ) is calculated in the case of U = +∞ by solv-
ing two fourth-order and sixth-order polynomial equations
numerically (see Fig. 2). This indicates that in the case of
t′ > tc(λ) and any finite U the singlet state has a lower
energy than the triplet state and the single electron state.
When t′ < tc(λ), I have a fc so that the singlet state has a
higher energy than ε0 when U > fc(λ, t

′). fc is calculated
by solving the characteristic polynomial equation numer-
ically (I take α = 1/2) as shown in Figure 3.

The other (2na + 1)-site problems (na = 3, 4, 6) are
solved numerically by exact diagonalization. The similar
results on tc(λ) and fc(λ, t

′) with different na are obtained.
I have tc(λ) → 1/(na − 1) when λ � 0. For example
in na = 2 or one-dimensional case, tc(λ) → 1. When
t′ < tc(λ), the larger na is, the larger fc is so that the
lowest energy of the singlet state is higher than ε0. I just
present numerical results of λ = 2 for na = 2, 3, 4, 6 in
Figure 4.

The uniqueness of the ground state is proved by Tasaki
in the one-dimensional case [11]. His proof also holds for
the higher dimensional case. Assume |Ψ〉 is a ground state
of HH. Since εc is the lowest energy of hi, using the vari-
ational principle, the state must satisfy

hi0|Ψ〉 = εc|Ψ〉 (22)

for all sites i ∈ A and

ni↑ni↓|Ψ〉 = 0 (23)

for all sites on the lattice. According to Tasaki’s lemma,
|Ψ〉 must be written in the form

|Ψ〉 = a†i↑|Ψ1〉+ a†i↓|Ψ2〉 (24)

with some state |Ψ1〉 and |Ψ2〉 if it is a ground state of
hi,0 (i ∈ A). As |Ψ〉 is also a ground state of hi+a,0 where
i + a is one of the nearest neighbor sites belonging to A,
applying Tasaki’s lemma once again, we obtain

|Ψ〉 = a†i,↑a
†
i+a,↑|ψ

′
1〉

+ (a†i,↑a
†
i+a,↓ + a†i,↓a

†
i+a,↑)|ψ

′
2〉

+ a†i,↓a
†
i+a,↓|ψ

′
3〉 (25)

with some states |ψ′n〉 (n = 1, 2, 3). The operators a†i,σ
and a†i+a,σ form a spin triplet state. Successively applying

Tasaki’s lemma, one obtain

|Ψ〉 =

NA∑
M=0

CMδ(
∑
i

σ(i)−NA +M)
∏
i

a†i,σ(i)|0〉

=

NA∑
M=0

CM (
∑
i

S−ic)NA−M |Ψc〉 (26)

with NA + 1 coefficients CM . Therefore the state ground
state is unique except for NA + 1 spin SU(2) degeneracy.

In short, we conclude that when t′ ≤ tc(λ) and J ≥
fc(λ, t

′), the ground states of hi with n = 1, · · · , na + 1
electrons has the global lowest energy ε0, and those of
n = na + 2, · · · , 2(2na + 1) has higher energies. Under
these conditions each hi|Ψc〉 = ε0|Ψc〉 and ε0 is the global
lowest energy of hi. In the variational principle |Ψc〉 is the
lowest energy state of

∑
i hi. Therefore I conclude that

|Ψc〉 is the ground state of equation (6) when t′ < tc(λ),
U > fc(λ, t

′) and the density of electrons is nb/(na + nb).
Due to spin SU(2) symmetry other 2Stot ground states
are constructed by (

∑
i S
−
ic)m|Ψc〉 (m = 1, 2, · · · , 2Stot)

and Stot = N∧/2 Q.E.D.
Combining this theorem and the lemma, we prove The-

orem I. From the proof of Theorem II we have to make
use of the variational principle to reduce the ferromag-
netic problem on the lattice ∧ to that on a 2na + 1-site
cluster. Numerical calculations on these small clusters are
needed to determine the functions tc and fc. A direct ap-
plication of the method used in the Hubbard to the Kondo
model is not successful, since the Kondo lattice model con-
tains localized spins as well as conduction electrons. On
the other hand exact diagonalization is only available for
very few-site and low spin problem. Physically we believe
the Kondo lattice model is easier to form a ferromagnetic
state than the Hubbard model, and our lemma also proves
this point. However technically it is not so easy to ex-
tract some exact results from the Kondo lattice model.
Our lemma provides an efficient way to understand ferro-
magnetism in the Kondo lattice model by utilizing some
results of the Hubbard model.

Theorem II is valid at the electron filling ne = nb/(na+
nb). After introducing the next nearest neighbor hopping
in HH, the band of electrons is divided into two or more
subbands. For instance, in the one-dimensional case the
single electron spectra are ε1(k) = −2t′ cos 2k − 2(t + t′)
and ε2(k) = +2t cos 2k + λ2(t + t′) with |k| ≤ π/2. The
filling ne means the lower band is fully filled. In this case
the ground state is insulating [11]. However Penc et al.
found that the ferromagnetism survives when the system
deviates from the fully filling of the lower band [14]. In
this case the ferromagnetic state is metallic.

4 Discussions

The mechanism of ferromagnetism in the Kondo model
is usually summarized as the double exchange mechanism
in the strong coupling limit. Sometimes the physical pic-
ture of double exchange mechanism is also true in the case
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of finite coupling. In the case of one-electron, the ground
state of Kondo lattice model is always fully saturated fer-
romagnetic, which is proved by using of the lemma and the
fact that the ground state of the Hubbard model with one
electron has always the maximum of total spin 1/2. In the
case of two electrons, the result depends on the boundary
condition. For example the ground state is a spin singlet
on a ring even in the strong Hund coupling limit. Essen-
tially the mechanism is a one-particle picture. The mo-
tion of electrons, or the kinetical energy tends to form a
paramagnetic state. To form a ferromagnet, the exchange
coupling has to overcome the competition from the kinet-
ical energy. On the lattices in Figure 1 when t′ = 0 the
spectrum of single electron is completely flat, and there
is no competition from the kinetical energy. Thus even
a small coupling will lead to electrons to form a ferro-
magnetic state when the flat-band is fully filled. The true
competition comes from the case of t′ 6= 0. From the nu-
merical results in Figures 3 and 4, we find that fc is much
larger than t and t′. We use the variational approach to
obtain fc. Hence it is a sufficient condition. At least it
tells us that we need a strong exchange coupling to reach
a ferromagnetic state. Hence to flatten the band structure
of electrons and to increase the exchange coupling and
electron-electron interaction are two of the basic routines
to look for ferromagnetism in the Kondo lattice model.

Another route to ferromagnetism in the Hubbard
model was proposed by Müller-Hartmann [15]. On a one-
dimensional chain, let take the nearest-neighbor hopping
term −t and the next nearest neighbor hopping term t′

(both t and t′ are positive). The single electron spectrum
is

ε(k) = −2t cosk + 2t′ cos 2k. (27)

At the bottom of the band there appear two degenerate
minima around cosk0 = t/4t′ when t′ > t/4. In the large
U limit, Muller-Hartmann showed that the mode is equiv-
alent to a system with two one-dimensional chains coupled
ferromagnetically in a low density limit of electrons. The
resulting Hamiltonian has a ferromagnetic ground state.
Numerical calculation confirmed Müller-Hartmann’s idea
and show that the ferromagnetism exists in the case of a
finite density of electrons and finite U [16]. This mecha-
nism can be also realized in the t−t′ Kondo lattice model.

Using the results of the Hubbard model, we conclude that
the ground state of the Kondo lattice model is ferromag-
netic when the electron band has several degenerate min-
ima and exchange coupling is sufficiently large at least in
the one-dimensional case.
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also would like to thank Prof. H. Shiba and acknowledge the
hospitality of Department of Physics, Tokyo Institute of Tech-
nology. This work was supported in part by Japan Society of
the Promotion of Sciences and by the CRGC research grant of
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